An experimental evolution study confirms that discontinuous gas exchange does not contribute to body water conservation in locusts.

نویسندگان

  • Stav Talal
  • Amir Ayali
  • Eran Gefen
چکیده

The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO2, rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts.

The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration ...

متن کامل

The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water.

Insects breathe through valved openings (spiracles) in their cuticle. Many insects open and close their spiracles in a cyclic pattern (discontinuous gas-exchange cycles, or DGC). These cycles were observed over half a century ago, their hypothesized function being to minimize loss of water from the tracheal system. However, numerous recent studies have found that respiration accounts for a smal...

متن کامل

Discontinuous gas exchange and the significance of respiratory water loss in Scarabaeine beetles.

Respiratory water loss in insects is a controversial topic. Whilst earlier studies considered respiratory transpiration a significant component of overall water loss, to the extent that it was thought to be responsible not only for the evolution of discontinuous gas exchange cycles (DGCs) but also for variation in DGC patterns, later work repeatedly questioned its importance. In particular, inv...

متن کامل

Allometric scaling of discontinuous gas exchange patterns in the locust Locusta migratoria throughout ontogeny.

The discontinuous gas exchange cycle (DGC) is a three-phase breathing pattern displayed by many insects at rest. The pattern consists of an extended breath-hold period (closed phase), followed by a sequence of rapid gas exchange pulses (flutter phase), and then a period in which respiratory gases move freely between insect and environment (open phase). This study measured CO(2) emission in rest...

متن کامل

Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).

Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biology letters

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2016